These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pollen reinforces learning in honey bee pollen foragers but not in nectar foragers. Author: Nery D, Moreno E, Arenas A. Journal: J Exp Biol; 2020 Nov 16; 223(Pt 22):. PubMed ID: 33077641. Abstract: Searching for reward motivates and drives behaviour. In honey bees Apis mellifera, specialized pollen foragers are attracted to and learn odours with pollen. However, the role of pollen as a reward remains poorly understood. Unlike nectar, pollen is not ingested during collection. We hypothesized that pollen (but not nectar) foragers could learn pollen by sole antennal or tarsal stimulation. Then, we tested how pairing of pollen (either hand- or bee-collected) and a neutral odour during a pre-conditioning affects performance of both pollen and nectar foragers during the classical conditioning of the proboscis extension response. Secondly, we tested whether nectar and pollen foragers perceive the simultaneous presentation of pollen (on the tarsi) and sugar (on the antennae) as a better reinforcement than sucrose alone. Finally, we searched for differences in learning of the pollen and nectar foragers when they were prevented from ingesting the reward during the conditioning. Differences in pollen-reinforced learning correlate with division of labour between pollen and nectar foragers. Results show that pollen foragers performed better than nectar foragers during the conditioning phase after being pre-conditioned with pollen. Pollen foragers also performed better than nectar foragers in both the acquisition and extinction phases of the conditioning, when reinforced with the dual reward. Consistently, pollen foragers showed improved abilities to learn cues reinforced without sugar ingestion. We discussed that differences in how pollen and nectar foragers respond to a cue associated with pollen greatly contribute to the physiological mechanism that underlies foraging specialization in the honeybee.[Abstract] [Full Text] [Related] [New Search]