These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Element-Specific Detection of Sub-Nanosecond Spin-Transfer Torque in a Nanomagnet Ensemble.
    Author: Emori S, Klewe C, Schmalhorst JM, Krieft J, Shafer P, Lim Y, Smith DA, Sapkota A, Srivastava A, Mewes C, Jiang Z, Khodadadi B, Elmkharram H, Heremans JJ, Arenholz E, Reiss G, Mewes T.
    Journal: Nano Lett; 2020 Nov 11; 20(11):7828-7834. PubMed ID: 33084344.
    Abstract:
    Spin currents can exert spin-transfer torques on magnetic systems even in the limit of vanishingly small net magnetization, as recently shown for antiferromagnets. Here, we experimentally show that a spin-transfer torque is operative in a macroscopic ensemble of weakly interacting, randomly magnetized Co nanomagnets. We employ element- and time-resolved X-ray ferromagnetic resonance (XFMR) spectroscopy to directly detect subnanosecond dynamics of the Co nanomagnets, excited into precession with cone angle ≳0.003° by an oscillating spin current. XFMR measurements reveal that as the net moment of the ensemble decreases, the strength of the spin-transfer torque increases relative to those of magnetic field torques. Our findings point to spin-transfer torque as an effective way to manipulate the state of nanomagnet ensembles at subnanosecond time scales.
    [Abstract] [Full Text] [Related] [New Search]