These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 18F-Fluorodeoxyglucose-Positron Emission Tomography Imaging Detects Response to Therapeutic Intervention and Plaque Vulnerability in a Murine Model of Advanced Atherosclerotic Disease-Brief Report.
    Author: Jarr KU, Ye J, Kojima Y, Nanda V, Flores AM, Tsantilas P, Wang Y, Hosseini-Nassab N, Eberhard AV, Lotfi M, Käller M, Smith BR, Maegdefessel L, Leeper NJ.
    Journal: Arterioscler Thromb Vasc Biol; 2020 Dec; 40(12):2821-2828. PubMed ID: 33086865.
    Abstract:
    OBJECTIVE: This study sought to determine whether 18F-fluorodeoxyglucose-positron emission tomography/computed tomography could be applied to a murine model of advanced atherosclerotic plaque vulnerability to detect response to therapeutic intervention and changes in lesion stability. Approach and Results: To analyze plaques susceptible to rupture, we fed ApoE-/- mice a high-fat diet and induced vulnerable lesions by cast placement over the carotid artery. After 9 weeks of treatment with orthogonal therapeutic agents (including lipid-lowering and proefferocytic therapies), we assessed vascular inflammation and several features of plaque vulnerability by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography and histopathology, respectively. We observed that 18F-fluorodeoxyglucose-positron emission tomography/computed tomography had the capacity to resolve histopathologically proven changes in plaque stability after treatment. Moreover, mean target-to-background ratios correlated with multiple characteristics of lesion instability, including the corrected vulnerability index. CONCLUSIONS: These results suggest that the application of noninvasive 18F-fluorodeoxyglucose-positron emission tomography/computed tomography to a murine model can allow for the identification of vulnerable atherosclerotic plaques and their response to therapeutic intervention. This approach may prove useful as a drug discovery and prioritization method.
    [Abstract] [Full Text] [Related] [New Search]