These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects on nitrogen balance and metabolism of branched-chain amino acids by growing pigs of supplementing isoleucine and valine to diets with adequate or excess concentrations of dietary leucine.
    Author: Kwon WB, Soto JA, Stein HH.
    Journal: J Anim Sci; 2020 Nov 01; 98(11):. PubMed ID: 33095867.
    Abstract:
    Diets based on high levels of corn protein have elevated concentrations of Leu, which may negatively affect N retention in pigs. An experiment was, therefore, conducted to test the hypothesis that Ile and Val supplementation may overcome the detrimental effects of excess dietary Leu on N balance and metabolism of branched-chain amino acids (BCAA) in growing pigs. A total of 144 barrows (initial body weight: 28.5 kg) were housed in metabolism crates and randomly assigned to 1 of 18 dietary treatments. The basal diet contained 0.98% standardized ileal digestible (SID) Lys and had SID Leu, Val, and Ile ratios to SID Lys of 100%, 60%, and 43%, respectively. Crystalline l-Leu (0% or 2.0%), l-Ile (0%, 0.1%, or 0.2%), and l-Val (0%, 0.1%, or 0.2%) were added to the basal diet resulting in a total of 18 dietary treatments that were arranged in a 2 × 3 × 3 factorial. Urine and fecal samples were collected for 5 d after 7 d of adaptation. Blood, skeletal muscle, and liver samples were collected at the conclusion of the experiment. There were no three-way interactions among the main effects. Excess Leu in diets reduced (P < 0.05) N retention and biological value of protein and increased (P < 0.001) plasma urea N (PUN), but PUN was reduced (P < 0.05) as dietary Val increased. Concentrations of Leu in the liver were greater (P < 0.001) in pigs fed excess Leu diets than in pigs fed adequate Leu diets, but concentrations of BCAA in muscle were greater (P < 0.05) in pigs fed low-Leu diets. Increasing dietary Ile increased (P < 0.001) plasma-free Ile and plasma concentration of the Ile metabolite, α-keto-β-methylvalerate, but the increase was greater in diets without excess Leu than in diets with excess Leu (interaction, P < 0.001). Plasma concentrations of Val and the Val metabolite α-keto isovalerate increased (P < 0.001) with increasing dietary Val in diets with adequate Leu, but not in diets with excess Leu (interaction, P < 0.001). Increasing dietary Leu increased (P < 0.001) plasma-free Leu and plasma concentration of the Leu metabolite, α-keto isocaproate (KIC). In contrast, increased dietary Val reduced (P < 0.05) the plasma concentration of KIC. In conclusion, excess dietary Leu reduced N retention and increased PUN in growing pigs, but Val supplementation to excess Leu diets may increase the efficiency of amino acid utilization for protein synthesis as indicated by reduced PUN.
    [Abstract] [Full Text] [Related] [New Search]