These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Whole-body magnetic resonance imaging (WB-MRI) reporting with the METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P): inter-observer agreement between readers of different expertise levels.
    Author: Pricolo P, Ancona E, Summers P, Abreu-Gomez J, Alessi S, Jereczek-Fossa BA, De Cobelli O, Nolè F, Renne G, Bellomi M, Padhani AR, Petralia G.
    Journal: Cancer Imaging; 2020 Oct 27; 20(1):77. PubMed ID: 33109268.
    Abstract:
    BACKGROUND: The METastasis Reporting and Data System for Prostate Cancer (MET-RADS-P) guidelines are designed to enable reproducible assessment in detecting and quantifying metastatic disease response using whole-body magnetic resonance imaging (WB-MRI) in patients with advanced prostate cancer (APC). The purpose of our study was to evaluate the inter-observer agreement of WB-MRI examination reports produced by readers of different expertise when using the MET-RADS-P guidelines. METHODS: Fifty consecutive paired WB-MRI examinations, performed from December 2016 to February 2018 on 31 patients, were retrospectively examined to compare reports by a Senior Radiologist (9 years of experience in WB-MRI) and Resident Radiologist (after a 6-months training) using MET-RADS-P guidelines, for detection and for primary/dominant and secondary response assessment categories (RAC) scores assigned to metastatic disease in 14 body regions. Inter-observer agreement regarding RAC score was evaluated for each region by using weighted-Cohen's Kappa statistics (K). RESULTS: The number of metastatic regions reported by the Senior Radiologist (249) and Resident Radiologist (251) was comparable. For the primary/dominant RAC pattern, the agreement between readers was excellent for the metastatic findings in cervical, dorsal, and lumbosacral spine, pelvis, limbs, lungs and other sites (K:0.81-1.0), substantial for thorax, retroperitoneal nodes, other nodes and liver (K:0.61-0.80), moderate for pelvic nodes (K:0.56), fair for primary soft tissue and not assessable for skull due to the absence of findings. For the secondary RAC pattern, agreement between readers was excellent for the metastatic findings in cervical spine (K:0.93) and retroperitoneal nodes (K:0.89), substantial for those in dorsal spine, pelvis, thorax, limbs and pelvic nodes (K:0.61-0.80), and moderate for lumbosacral spine (K:0.44). CONCLUSIONS: We found inter-observer agreement between two readers of different expertise levels to be excellent in bone, but mixed in other body regions. Considering the importance of bone metastases in patients with APC, our results favor the use of MET-RADS-P in response to the growing clinical need for monitoring of metastasis in these patients.
    [Abstract] [Full Text] [Related] [New Search]