These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bacterial killing by complement. C9-mediated killing in the absence of C5b-8. Author: Dankert JR, Esser AF. Journal: Biochem J; 1987 Jun 01; 244(2):393-9. PubMed ID: 3311029. Abstract: The ability of serum complement to kill Gram-negative bacteria requires assembly of the membrane attack complex (MAC) on the cell surface. The molecular events that lead to cell killing after MAC assembly are unknown. We have investigated the effect of C9 on bacterial survival in the presence and absence of its receptor, the C5b-8 complex, on the outer membrane. A fluorescence assay of the membrane potential across the inner bacterial membrane revealed that addition of C9 to cells bearing the performed C5b-8 complex caused a rapid and complete dissipation of the membrane potential. No fluorescence change was observed in serum-resistant strains of Escherichia coli. Addition of trypsin, after C9 was bound to C5b-8, did not rescue the cells from the lethal effects of C9. Furthermore, assays of cell killing kinetics and C9 binding indicate that formation of tubular poly(C9) is not required for killing. When C9 was introduced into the periplasmic space in the absence of its receptor by means of an osmotic shock procedure, cell killing occurred. Other proteins, such as C8 or serum albumin, were not toxic, and C9 was ineffective against two resistant strains. The results presented here and previously [Dankert & Esser (1986) Biochemistry 25, 1094-1100], when considered together, indicate that the 'lethal unit' in complement killing of some Gram-negative bacteria is a C9-derived product that acts by dissipation of cellular energy.[Abstract] [Full Text] [Related] [New Search]