These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphate removal from river water using a highly efficient magnetically recyclable Fe3O4/La(OH)3 nanocomposite.
    Author: Ahmed S, Lo IMC.
    Journal: Chemosphere; 2020 Dec; 261():128118. PubMed ID: 33113641.
    Abstract:
    Lanthanum based nanocomposites have attracted much attention for their efficiency and capacity in removing phosphate from water. This study developed a Fe3O4/La(OH)3 nanocomposite through a precipitation route at room temperature and used the nanocomposite to remove phosphate from river water. Performance of the Fe3O4/La(OH)3 nanocomposite was evaluated in terms of sorption kinetics, sorption isotherms, different solution pH values, competing ions, and regenerative ability. The Fe3O4/La(OH)3 nanocomposite showed a nanosphere-like morphology with 97% magnetic separation efficiency, excellent phosphate removal capacity of 253.83 mg/g, 99% phosphate selectivity in the presence of chloride, nitrate, sulfate, fluoride, and calcium as competing ions and excellent reusability in ten cycles. Based on these findings, the Fe3O4/La(OH)3 nanocomposite was used to remove phosphate from river water. It was found that, in 60 min, a 0.1 g/L dosage of the nanocomposite was able to reduce the phosphate in the water from 0.087 mg/L to 0.002 mg/L. Moreover, studying of the removal mechanism of the nanocomposite revealed that surface complexation and the electrostatic interaction between phosphate species and lanthanum hydroxide played a prominent role in the sorption of phosphate.
    [Abstract] [Full Text] [Related] [New Search]