These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Large-scale pattern of resistance genes and bacterial community in the tap water along the middle and low reaches of the Yangtze River. Author: Zhang W, Suyamud B, Lohwacharin J, Yang Y. Journal: Ecotoxicol Environ Saf; 2021 Jan 15; 208():111517. PubMed ID: 33120256. Abstract: Antibiotic and metal resistance genes (ARGs and MRGs) in tap water are of great public health concern. However, very fewer studies focused on the relationship between resistance genes and opportunistic pathogens in tap water. In this study, the diversity and abundance of resistance genes and bacterial community from tap water at a large-scale along the middle and lower reaches of the Yangtze River were investigated. The total relative abundances of ARGs and MRGs were 2.95 × 10-3-1.22 × 10-1 and 1.93 × 10-3-1.20 × 10-1 copies/16S rRNA, respectively. The blaTEM and merP detected were major ARG and MRG subtypes, respectively. Mobile genetic elements (Intl1 and tnpA) showed significant correlations with the abundance of ARGs. Heavy metals also played a vital role in the co-selection of ARGs. Surprisingly, there were still eight opportunistic pathogens in tap water, among which Escherichia coli, Helicobacter pylori, Mycoplasma pneumoniae, and Porphyromonas gingivalis were the potential host of ARGs and MRGs. Escherichia coli had the highest abundance, while Bacillus anthracis had the highest detected frequency (100%), a widespread opportunistic pathogen in tap water.[Abstract] [Full Text] [Related] [New Search]