These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. Author: Menon AS, Goldberg AL. Journal: J Biol Chem; 1987 Nov 05; 262(31):14929-34. PubMed ID: 3312197. Abstract: The interaction of protein substrates with protease La from Escherichia coli enhances its ability to hydrolyze ATP and peptide bonds. These studies were undertaken to clarify how unfolded proteins allosterically stimulate this ATPase activity. The tetrameric protease can bind four molecules of ATP, which activates proteolysis, or four molecules of ADP, which inhibits enzymatic activity. Protein substrates stimulate binding of the nonhydrolyzable ATP analog [3H] adenyl-5'yl imidodiphosphate, although they do not increase the net binding of [3H]ATP or [3H]ADP. Once bound, ATP is quickly hydrolyzed to ADP, which remains noncovalently associated with protease La even through repeated gel filtrations. Exposure to protein substrates (e.g. denatured bovine serum albumin at 37 degrees C) induces the release of all the bound ADP from the enzyme. Nonhydrolyzable ATP analogs bound to the enzyme were not released by these substrates. Proteins that are not degraded (e.g. native bovine serum albumin) and oligopeptides that only bind to the catalytic site do not induce ADP release. Thus, polypeptide substrates have to interact with an allosteric site to induce this effect. The protein-induced ADP release is inhibited by high concentrations of Mg2+ and is highly temperature-dependent. Protein substrates promoted [3H]ATP binding in the presence of ADP and Mg2+ (i.e. ATP-ADP exchange) and reduced the ability of ADP to inhibit the enzyme's peptidase and ATPase activities. These results indicate that: 1) ADP release is a rate-limiting step in protease La function; 2) bound ADP molecules inhibit protein and ATP hydrolysis in vivo; 3) denatured proteins interact with the enzyme's regulatory site and promote ADP release, ATP binding, and their own hydrolysis.[Abstract] [Full Text] [Related] [New Search]