These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nanoparticles in sustainable agriculture: An emerging opportunity.
    Author: Singh RP, Handa R, Manchanda G.
    Journal: J Control Release; 2021 Jan 10; 329():1234-1248. PubMed ID: 33122001.
    Abstract:
    Conventional agriculture often relies on bulky doses of fertilizers and pesticides that have adversely affected the living beings as well as the ecosystems. As a basic tenet of sustainable agriculture, minimum agrochemicals should be used so that the environment can be protected and various species can be conserved. Further, sustainable agriculture should be a low input system, where the production costs are lower and net returns are higher. The application of nanotechnology in agriculture can significantly enhance the efficiency of agricultural inputs and thus it offers a significant way to maintain sustainable development of agroecosystems via nanoparticles. In this regard, nano-plant growth promoters, nanopesticides, nanofertilizers, nano-herbicides, agrochemical encapsulated nanocarrier systems etc. have been developed for the potential applications in agriculture. These can have great benefits for agriculture, including higher production of crops, inhibition of plant pathogens, removal of unwanted weeds and insects with lesser cost, energy and waste production. However, there are several concerns related to the use of nanoparticles in agriculture. These include the approaches for synthesis, their mechanisms of penetration to applied surfaces and the risks involved. Though, advent of new technologies has significantly improved the synthesis and application of nanomaterials in agriculture, there are many uncertainties regarding nano-synthesis, their way of utilization, uptake and internalization inside the crop cells. Therefore, an elaborate investigation is required for deciphering the engineered nanomaterials, assessing their mechanistic application and agroecological toxicity. Hence, this review is aimed to critically highlight the NPs material application and points towards the vital gaps in the use of nanotechnology for sustainable agriculture.
    [Abstract] [Full Text] [Related] [New Search]