These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Competitive Selection of Hydroxylamine on Ammonia Oxidizing Bacteria and Nitrite Oxidizing Bacteria].
    Author: Qiao X, Wang B, Guo YY, Peng YZ.
    Journal: Huan Jing Ke Xue; 2020 Aug 08; 41(8):3765-3772. PubMed ID: 33124352.
    Abstract:
    The effective inhibition of nitrite oxidizing bacteria (NOB) is the key to realizing satisfactory nitrite accumulation and achieving effective nitritation. In order to explore the selective effect of hydroxylamine (NH2 OH) on ammonia oxidizing bacteria (AOB) and NOB, a sequencing batch reactor (SBR) with the operation mode of anaerobic/aerobic/anoxia (A/O/A) was used to observe the start-up of nitritation at different concentrations and frequencies of NH2 OH. The results showed that when 5 mg·L-1 of NH2 OH was added once every 2 cycles, the nitrite accumulation rate (NAR) increased from 0.1% to 57.4% in 6 days, and was maintained at (62.0±4.6)% until the end of the trials. In the typical cycle on day 6, the NN4+-N dropped from 26.05 mg·L-1 to 8.06 mg·L-1, thus producing 9.02 mg·L-1 of NO2--N and 6.70 mg·L-1 of NO3--N. Meanwhile, the ratio of the maximum activity of AOB (rAOB) to NOB (rNOB) increased from 1.05 on day 1 to 4.22 on day 9. Moreover, qPCR results indicated that the abundance of AOB and NOB decreased to 30.2% and 19.1%, respectively, on day 9 in comparison to the original sample. The results indicate that the selective effect of AOB and NOB based on NH2 OH is expected to provide a feasible application for the rapid start-up nitritation of municipal wastewater.
    [Abstract] [Full Text] [Related] [New Search]