These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biomimetic Affinity Ligands for Protein Purification. Author: Sousa IT, Taipa MÂ. Journal: Methods Mol Biol; 2021; 2178():167-199. PubMed ID: 33128751. Abstract: The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins, and are designated as "biomimetic ligands". A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogs of amino acid side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, and highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.[Abstract] [Full Text] [Related] [New Search]