These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wavelet Scattering Transform for ECG Beat Classification. Author: Liu Z, Yao G, Zhang Q, Zhang J, Zeng X. Journal: Comput Math Methods Med; 2020; 2020():3215681. PubMed ID: 33133225. Abstract: An electrocardiogram (ECG) records the electrical activity of the heart; it contains rich pathological information on cardiovascular diseases, such as arrhythmia. However, it is difficult to visually analyze ECG signals due to their complexity and nonlinearity. The wavelet scattering transform can generate translation-invariant and deformation-stable representations of ECG signals through cascades of wavelet convolutions with nonlinear modulus and averaging operators. We proposed a novel approach using wavelet scattering transform to automatically classify four categories of arrhythmia ECG heartbeats, namely, nonectopic (N), supraventricular ectopic (S), ventricular ectopic (V), and fusion (F) beats. In this study, the wavelet scattering transform extracted 8 time windows from each ECG heartbeat. Two dimensionality reduction methods, principal component analysis (PCA) and time window selection, were applied on the 8 time windows. These processed features were fed to the neural network (NN), probabilistic neural network (PNN), and k-nearest neighbour (KNN) classifiers for classification. The 4th time window in combination with KNN (k = 4) has achieved the optimal performance with an averaged accuracy, positive predictive value, sensitivity, and specificity of 99.3%, 99.6%, 99.5%, and 98.8%, respectively, using tenfold cross-validation. Thus, our proposed model is capable of highly accurate arrhythmia classification and will provide assistance to physicians in ECG interpretation.[Abstract] [Full Text] [Related] [New Search]