These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Boosting carrier mobility and stability in indium-zinc-tin oxide thin-film transistors through controlled crystallization.
    Author: On N, Kim BK, Kim Y, Kim EH, Lim JH, Hosono H, Kim J, Yang H, Jeong JK.
    Journal: Sci Rep; 2020 Nov 02; 10(1):18868. PubMed ID: 33139811.
    Abstract:
    We investigated the effect of film thickness (geometrical confinement) on the structural evolution of sputtered indium-zinc-tin oxide (IZTO) films as high mobility n-channel semiconducting layers during post-treatment at different annealing temperatures ranging from 350 to 700 °C. Different thicknesses result in IZTO films containing versatile phases, such as amorphous, low-, and high-crystalline structures even after annealing at 700 °C. A 19-nm-thick IZTO film clearly showed a phase transformation from initially amorphous to polycrystalline bixbyite structures, while the ultra-thin film (5 nm) still maintained an amorphous phase. Transistors including amorphous and low crystalline IZTO films fabricated at 350 and 700 °C show reasonable carrier mobility (µFE) and on/off current ratio (ION/OFF) values of 22.4-35.9 cm2 V-1 s-1 and 1.0-4.0 × 108, respectively. However, their device instabilities against positive/negative gate bias stresses (PBS/NBS) are unacceptable, originating from unsaturated bonding and disordered sites in the metal oxide films. In contrast, the 19-nm-thick annealed IZTO films included highly-crystalline, 2D spherulitic crystallites and fewer grain boundaries. These films show the highest µFE value of 39.2 cm2 V-1 s-1 in the transistor as well as an excellent ION/OFF value of 9.7 × 108. Simultaneously, the PBS/NBS stability of the resulting transistor is significantly improved under the same stress condition. This promising superior performance is attributed to the crystallization-induced lattice ordering, as determined by highly-crystalline structures and the associated formation of discrete donor levels (~ 0.31 eV) below the conduction band edge.
    [Abstract] [Full Text] [Related] [New Search]