These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stomatal closure of tomato under drought is driven by an increase in soil-root hydraulic resistance. Author: Abdalla M, Carminati A, Cai G, Javaux M, Ahmed MA. Journal: Plant Cell Environ; 2021 Feb; 44(2):425-431. PubMed ID: 33150971. Abstract: The fundamental question as to what triggers stomatal closure during soil drying remains contentious. Thus, we urgently need to improve our understanding of stomatal response to water deficits in soil and atmosphere. Here, we investigated the role of soil-plant hydraulic conductance (Ksp ) on transpiration (E) and stomatal regulation. We used a root pressure chamber to measure the relation between E, leaf xylem water potential (ψleaf-x ) and soil water potential (ψsoil ) in tomato. Additional measurements of ψleaf-x were performed with unpressurized plants. A soil-plant hydraulic model was used to simulate E(ψleaf-x ) for decreasing ψsoil . In wet soils, E(ψleaf-x ) had a constant slope, while in dry soils, the slope decreased, with ψleaf-x rapidly and nonlinearly decreasing for moderate increases in E. The ψleaf-x measured in pressurized and unpressurized plants matched well, which indicates that the shoot hydraulic conductance did not decrease during soil drying and that the decrease in Ksp is caused by a decrease in soil-root conductance. The decrease of E matched well the onset of hydraulic nonlinearity. Our findings demonstrate that stomatal closure prevents the drop in ψleaf-x caused by a decrease in Ksp and elucidate a strong correlation between stomatal regulation and belowground hydraulic limitation.[Abstract] [Full Text] [Related] [New Search]