These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Riboflavin, vitamin B2, attenuates NLRP3, NLRC4, AIM2, and non-canonical inflammasomes by the inhibition of caspase-1 activity.
    Author: Ahn H, Lee GS.
    Journal: Sci Rep; 2020 Nov 05; 10(1):19091. PubMed ID: 33154451.
    Abstract:
    Riboflavin is commonly taken as a nutritional supplement, and it converts to coenzymes during the process of energy production from carbohydrates, fats, and proteins. Although riboflavin is considered to be an anti-inflammatory vitamin because of its antioxidant properties, the effects of riboflavin on inflammasome have been not reported. Inflammasome, a cytosolic surveillance protein complex, leads to the activation of caspase-1, cytokine maturation, and pyroptosis. In the present study, riboflavin attenuated the indicators of NLRP3 inflammasome activation in macrophages, such as the maturation and secretion of interleukin (IL)-1β, IL-18, and caspase-1; the formation of Asc pyroptosome; and the cleavage of gasdermin D. In addition, the oral and peritoneal administration of riboflavin inhibited the peritoneal production of IL-1β and IL-18 in a mouse model. Mechanistically, riboflavin prevented mitochondrial perturbations, such as mitochondrial ROS production and mitochondrial DNA release, which trigger the NLRP3 inflammasome assembly. Riboflavin was further confirmed to disrupt the activity of caspase-1, and it also inhibited the AIM2, NLRC4, and non-canonical inflammasomes. Therefore, riboflavin has both an antioxidant effect and an anti-inflammasome property that regulates the inflammatory response.
    [Abstract] [Full Text] [Related] [New Search]