These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Construction of the 1D Covalent Organic Framework/2D g-C3N4 Heterojunction with High Apparent Quantum Efficiency at 500 nm. Author: Xing Y, Yin L, Zhao Y, Du Z, Tan HQ, Qin X, Ho W, Qiu T, Li YG. Journal: ACS Appl Mater Interfaces; 2020 Nov 18; 12(46):51555-51562. PubMed ID: 33156604. Abstract: The reasonable construction of heterojunction photocatalysts with clear nanostructures and a good interface contact especially the one-dimensional/two-dimensional (1D/2D) composite heterojunction with unique morphology is considered one of the most effective strategies for designing highly efficient photocatalysts. Herein, a series of the 1D β-keto-enamine-based covalent organic framework (COF)/2D g-C3N4 composite materials COF-CN (1:x; where 1:x represents the mass ratio of COF and g-C3N4, x = 2.5, 5, 10, 15, 20) is prepared through the in situ reaction of 2,4,6-triformylphloroglucinol (Tp) and benzidine (BD) in stripped g-C3N4 suspension. A series of characterizations, such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), have verified their 1D/2D heterojunction structure. With the introduction of 1D COF nanobelts, the absorption of the composite is largely extended to 560 nm. Photocatalytic experiments reveal that the composite COF/CN shows evidently superior photocatalytic performance than individual COF and g-C3N4. The optimized COF-CN (1:10) exhibits a H2 production rate of 12.8 mmol g-1·h-1 under visible-light (λ ≥ 420 nm) irradiation, which is about 62 and 284 times higher than those of COF and g-C3N4, respectively. The apparent quantum efficiency (AQE) of COF-CN (1:10) is about 15.09% under 500 nm light irradiation, which is one of the highest among previous COF- or g-C3N4-based materials. This work provides important strategies for designing and constructing high-efficiency heterojunction photocatalysts with multidimensional features.[Abstract] [Full Text] [Related] [New Search]