These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hierarchical porous silk fibroin/poly(L-lactic acid) fibrous membranes towards vascular scaffolds. Author: Song J, Chen Z, Murillo LL, Tang D, Meng C, Zhong X, Wang T, Li J. Journal: Int J Biol Macromol; 2021 Jan 01; 166():1111-1120. PubMed ID: 33159945. Abstract: Fibrous membranes played an important role to prepare tubular scaffolds for muscular artery regeneration. In this study, a strategy has been developed to combine silk fibroin (SF) with highly porous electrospun poly(L-lactic acid) (PLLA) fibrous membrane towards vascular scaffolds. After PLLA fibres were electrospun and collected, they were immersed into acetone to generate a porous structure with ultra-high surface area. While the pores on PLLA fibres were fulfilled with SF solution and dried, SF was coated uniformly and tightly on PLLA fibres. A multi-layer tubular structure of the tunica media was simulated by winding and stacking a strip of electrospun fibrous membrane. In vitro viability and morphology studies of A7r5 smooth muscle cells were undertaken for up to 14 days. Because the hydrophilicity of SF/PLLA composite fibres were improved dramatically, it had a positive effect on cell adhesion rate (97%) and proliferation (64.4%). Moreover, good cell morphology was observed via a multiphoton laser confocal microscope on SF/PLLA bioactive materials. These results demonstrated that the hierarchical porous SF/PLLA fibrous membranes are promising off-the-shelf scaffolds for muscular artery regeneration.[Abstract] [Full Text] [Related] [New Search]