These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sugar transport by the bacterial phosphotransferase system. The intrinsic fluorescence of enzyme I.
    Author: Neyroz P, Brand L, Roseman S.
    Journal: J Biol Chem; 1987 Nov 25; 262(33):15900-7. PubMed ID: 3316210.
    Abstract:
    Enzyme I of the bacterial phosphoenolpyruvate: glycose phosphotransferase system has 2 tryptophan residues/monomer, as determined spectrophotometrically. The tryptophan fluorescence has been investigated with the aid of nanosecond time-resolved techniques. The decay of the fluorescence intensity was analyzed in terms of a biexponential function. The contribution of the emission associated with the shorter decay constant increases from 17-19% at 1 degree C to 43-44% at room temperature. Decay-associated spectra obtained with Enzyme I indicate different spectral distributions associated with the two decay constants. The measurement of tumbling of Enzyme I as a function of temperature revealed a transition of rotational rates between 5 and 15.5 degrees C. Global analysis allowed decomposition of the anisotropy decay into a formulation consistent with monomer and dimer rotational contributions.
    [Abstract] [Full Text] [Related] [New Search]