These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Toward low-voltage dielectrophoresis-based microfluidic systems: A review.
    Author: Ramirez-Murillo CJ, de Los Santos-Ramirez JM, Perez-Gonzalez VH.
    Journal: Electrophoresis; 2021 Mar; 42(5):565-587. PubMed ID: 33166414.
    Abstract:
    Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point-of-care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low-cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode-based DEP and insulator-based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP-driven microfluidics.
    [Abstract] [Full Text] [Related] [New Search]