These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discovery of polypodiside as a Keap1-dependent Nrf2 activator attenuating oxidative stress and accumulation of extracellular matrix in glomerular mesangial cells under high glucose. Author: Yao H, Zhang N, Zhang W, Li J, Hua H, Li Y. Journal: Bioorg Med Chem; 2020 Dec 15; 28(24):115833. PubMed ID: 33166928. Abstract: Diabetic nephropathy (DN) is a severe microvascular complication of diabetes mellitus. High glucose has resulted in oxidative stress and following renal fibrosis as the crucial nodes of this disease. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating transcription of many antioxidant genes and suppressing synthesis of extracellular matrix. To discover Nrf2 activators targeting DN, we have evaluated polypodiside using cell-based assays. The results showed polypodiside inhibited the high glucose-induced self-limited proliferation of glomerular meangial cells. Activation of Nrf2 and enhanced transcription to antioxidant response elements were observed in the presence of polypodiside. Oxidative stress and accumulation of extracellular matrix induced by high glucose in glomerular meangial cells have been ameliorated by polypodiside. Further investigations revealed the effects of polypodiside on glomerular meangial cells were associated with activation of Nrf2. Co-immunoprecipitation of Nrf2 disclosed polypodiside disrupted the Kelch-like ECH-associated protein-1 (Keap1)-Nrf2 interaction. Molecular docking elucidated polypodiside could enter the Nrf2 binding cavity of Keap1 via interacting with the residues encompassing that cavity. These findings indicate polypodiside is a Keap1-dependent Nrf2 activator affording the catabatic effects against oxidative stress and accumulation of extracellular matrix in glomerular meangial cells under high glucose.[Abstract] [Full Text] [Related] [New Search]