These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design of Novel 4-Aminobenzofuroxans and Evaluation of Their Antimicrobial and Anticancer Activity.
    Author: Chugunova E, Gazizov A, Sazykina M, Akylbekov N, Gildebrant A, Sazykin I, Burilov A, Appazov N, Karchava S, Klimova M, Voloshina A, Sapunova A, Gumerova S, Khamatgalimov A, Gerasimova T, Dobrynin A, Gogoleva O, Gorshkov V.
    Journal: Int J Mol Sci; 2020 Nov 05; 21(21):. PubMed ID: 33167439.
    Abstract:
    A series of novel 4-aminobenzofuroxan derivatives containing aromatic/aliphatic amines fragments was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan. The quantum chemistry calculations were performed to identify the factors affecting the regioselectivity of the reaction. The formation of 4-substituted isomer is favored both by its greater stability and the lower activation barrier. Antimicrobial activity of the obtained compounds has been evaluated and some of them were found to suppress effectively bacterial biofilm growth. Fungistatic activity of 4-aminobenzofuroxans were tested on two genetically distinct isolates of M. nivale. The effect of some benzofuroxan derivatives is likely to be more universal against different varieties of M. nivale compared with benzimidazole and carbendazim. Additionally, their anti-cancer activity in vitro has been tested. 4-aminofuroxans possessing aniline moiety showed a high selectivity towards MCF-7 and M-HeLa tumor cell lines. Moreover, they exhibit a significantly lower toxicity towards normal liver cells compared to Doxorubicin and Tamoxifen. Thus, benzofuroxans containing aromatic amines fragments in their structure are promising candidates for further development both as anti-cancer and anti-microbial agents.
    [Abstract] [Full Text] [Related] [New Search]