These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Using dynamic molecular switches for shikimic acid production in Escherichia coli]. Author: Hou J, Gao C, Chen X, Liu L. Journal: Sheng Wu Gong Cheng Xue Bao; 2020 Oct 25; 36(10):2104-2112. PubMed ID: 33169575. Abstract: Shikimic acid is an intermediate metabolite in the synthesis of aromatic amino acids in Escherichia coli and a synthetic precursor of Tamiflu. The biosynthesis of shikimic acid requires blocking the downstream shikimic acid consuming pathway that leads to inefficient production and cell growth inhibition. In this study, a dynamic molecular switch was constructed by using growth phase-dependent promoters and degrons. This dynamic molecular switch was used to uncouple cell growth from shikimic acid synthesis, resulting in the production of 14.33 g/L shikimic acid after 72 h fermentation. These results show that the dynamic molecular switch could redirect the carbon flux by regulating the abundance of target enzymes, for better production. 莽草酸是大肠杆菌合成芳香族氨基酸的中间代谢物,也是抗流感药物“达菲”的重要合成前体。合成莽草酸需要截断莽草酸途径,导致芳香族氨基酸无法合成,因此面临细胞生长受到抑制的问题。使用动态调控策略通过将细胞生长和莽草酸的合成相互分离,可以提高菌株的生产性能。通过使用生长偶联型启动子和降解决定子 (Degrons),组建动态分子开关。利用该动态分子开关实现细胞生长与莽草酸合成分离,在5 L 发酵罐中经过72 h 发酵得到了14.33 g/L 的莽草酸。结果表明,这种动态分子开关可以通过调控靶蛋白丰度来改变碳流量平衡,使菌株获得更优秀的生产性能。.[Abstract] [Full Text] [Related] [New Search]