These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of Ocean Acidification and Microplastics on Microflora Community Composition in the Digestive Tract of the Thick Shell Mussel Mytilus coruscus Through 16S RNA Gene Sequencing.
    Author: Yang L, Lv L, Liu H, Wang M, Sui Y, Wang Y.
    Journal: Bull Environ Contam Toxicol; 2021 Oct; 107(4):616-625. PubMed ID: 33175187.
    Abstract:
    Ocean acidification and microplastic pollution is a global environmental threat, this research evaluated the effects of ocean acidification and microplastics on mussel digestive tract microbial community. The 16S rRNA gene was sequenced to characterize the flora. Species diversity in the samples was assessed by clustering valid tags on 97% similarity. Bacteroidetes, Firmicutes and Proteobacteria were the three most abundant genera in the four groups, with Bacteroidetes showing the highest diversity. However, no differences in flora structure were evident under various treatments. Phylogenetic relationship analysis revealed Bacteroidetes and Firmicutes had the highest OTU diversity. The weighted UniFrac distance, principal coordinate analysis (PCoA), unweighted pair group method with arithmetic mean (UPGMA) cluster tree and analysis of molecular variance (AMOVA) evaluation results for all samples also showed that changes in pH and microplastics concentration did not significantly affect the microbial community structure in the mussel digestive tract. The results presented the no significant effects of ocean acidification and microplastics intake on mussel intestinal diversity.
    [Abstract] [Full Text] [Related] [New Search]