These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Atmospheric concentrations and temporal trends of polychlorinated biphenyls and organochlorine pesticides in the Arctic during 2011-2018. Author: Hao Y, Li Y, Wania F, Yang R, Wang P, Zhang Q, Jiang G. Journal: Chemosphere; 2021 Mar; 267():128859. PubMed ID: 33176912. Abstract: Passive air samples were deployed in Ny-Ålesund and London Island (Svalbard, High Arctic) annually for seven years (2011-2018) to investigate concentrations, temporal trends and potential sources of selected persistent organic pollutants (POPs). Nine polychlorinated biphenyls and twelve organochlorine pesticides were detected in all samples, with 3,3'-dichlorobiphenyl (PCB-11) being the prevalent congener. Concentrations of most compounds were declining. The ratio of the α- and γ-isomer of hexachlorocyclohexane (HCH) in Arctic air was comparable with that in technical HCH mixtures, but higher than that in the atmosphere of other countries, thereby indicating the impact of historical use as well as the possible photoisomerization of the γ- into the α-isomer. The parent dichlorodiphenyltrichloroethane (DDT) was always less abundant than its degradation products dichlorodiphenylethylene (DDE), indicative of the impact of aged DDT sources in the Arctic atmosphere. However, o,p'-/p,p'-DDT ratios suggest only a minor contribution of dicofol-type DDT. A slightly declining temporal trend of the trans-chlordane/cis-chlordane ratio indicated the impact of secondary sources. The atmospheric distribution of the investigated POPs in the Arctic was mainly attributed to long-range atmospheric transport, whereas the influence of human activities from the scientific research stations was minor.[Abstract] [Full Text] [Related] [New Search]