These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dithiolation indolizine exerts viability suppression effects on A549 cells via triggering intrinsic apoptotic pathways and inducing G2/M phase arrest.
    Author: Li G, Wu X, Sun P, Zhang Z, Shao E, Mao J, Cao H, Huang H.
    Journal: Biomed Pharmacother; 2021 Jan; 133():110961. PubMed ID: 33190035.
    Abstract:
    Indolizine derivatives have been reported for the treatment of numerous diseases. However, few studies were carried out for non-small cell lung cancer (NSCLC). We synthesized series of indolizine compounds. The results of MTT assay showed compound 8 (C8) markedly inhibited the proliferation of A549 cells, however, C8 (15, 30 μg/mL) had little cytotoxicity in other cell lines (SH-SY5Y, HepG2, and BEAS-2B cells), Hoechst staining and JC-1 staining showed that C8 induced changes in the nucleus morphology, increased the loss in mitochondrial membrane potential in A549 cells. The results of flow cytometry manifested that cell cycle of the cells was arrested in the G2 / M phase by C8, ROS levels and the proportion of apoptosis of cells increased. We performed western blotting analysis to detect the expression levels of apoptosis and cycle-related proteins. These results validated that the apoptosis of cells was triggered by endoplasmic reticulum stress (ERS) and the PI3K/Akt-mediated mitochondrial pathway collaboratively. Besides, the utilization of PI3K/Akt inhibitors and p53 inhibitors further proves the above argument and C8-induced cycle arrest of A549 cells is majorly regulated by p53. C8 induced the accumulation of ROS contents involved in mitochondrial damage. The proliferation of A549 cells was inhibited after treatment with the compound, which induced apoptosis and cycle arrest of cells. It is suggested that C8(dithiolation indolizine) is a potential candidate compound against non-small cell lung cancer.
    [Abstract] [Full Text] [Related] [New Search]