These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CYT387, a Novel JAK2 Inhibitor, Suppresses IL-13-Induced Epidermal Barrier Dysfunction Via miR-143 Targeting IL-13Rα1 and STAT3. Author: Zu Y, Chen XF, Li Q, Zhang ST. Journal: Biochem Genet; 2021 Apr; 59(2):531-546. PubMed ID: 33190168. Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disease influencing not only children but also adults. It is well-known that AD has a complex pathogenesis without effective therapy. Herein, we explored the function and mechanism of CYT387, a novel JAK2 inhibitor, on epidermal barrier damage. HaCaT cells exposed with high-concentration Ca2+ (1.8 mM) for 14 days were recruited for the model of keratinocytes (KC). The cell model of skin barrier damage was induced by IL-13, and KC markers such as filaggrin (FLG), loricrin (LOR), and involucrin (IVL) were detected to judge the success of the model. In this study, we found that miR-143 was lowly expressed whereas IL-13Rα1 was highly expressed in blood cells of patients with AD, indicating their negative correlation. Moreover, IL-13 treatment down-regulated miR-143 and up-regulated activated JAK2 and STAT3 phosphorylation, which was reversed by CYT387 administration. The dual-luciferase reporter assay verified that miR-143 could directly bind to 3'-UTR of IL-13Rα1, as well as STAT3. Furthermore, the function of CYT387 in the skin barrier damage induced by IL-13 was abolished by miR-143 inhibitor. Thus, CYT387 might alleviate IL-13-induced epidermal barrier damage via targeting IL-13Rα1 and STAT3 by miR-143 to repress inflammation. These findings revealed that the protective effects and the underlying mechanisms of CYT387 in AD, which provided evidence that miR-143 may be a novel therapeutic target for AD.[Abstract] [Full Text] [Related] [New Search]