These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ag@WS2 quantum dots for Surface Enhanced Raman Spectroscopy: Enhanced charge transfer induced highly sensitive detection of thiram from honey and beverages. Author: Song Y, Huang HC, Lu W, Li N, Su J, Cheng SB, Lai Y, Chen J, Zhan J. Journal: Food Chem; 2021 May 15; 344():128570. PubMed ID: 33199122. Abstract: Novel SERS substrates is urgently in demand for rapid and sensitive analysis of toxic agrochemicals from food. In this work, a monodispersed tungsten disulfide quantum dots modified silver nanosphere (Ag@WS2QD) was prepared and used as SERS substrate. Ag@WS2QD generated uniform and stable SERS signals within 2 min, displaying great promise in "mixing and reading" detection. Compared to unmodified colloidal silver nanoparticles, 4 times higher analytical enhancement factor was found in Ag@WS2QD. Density functional theory calculation verified the enhanced charge transfer within the coupling systems of molecule-Ag@WS2QD. Besides, the unique surface properties are beneficial for the enrichment of specific molecule. Both the chemical extraction and enhanced charge transfer contributes to rapid and sensitive SERS detection of Ag@WS2QD. A "mixing and reading" SERS method for thiram from honey and four kinds of juice was developed from Ag@WS2QD, showing great promise for rapid and direct SERS detection for toxic agrochemicals and further applications.[Abstract] [Full Text] [Related] [New Search]