These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Solubility, Solution Thermodynamics, and Preferential Solvation of Amygdalin in Ethanol + Water Solvent Mixtures. Author: Aydi A, Ayadi C, Ghachem K, Al-Khazaal AZ, Delgado DR, Alnaief M, Kolsi L. Journal: Pharmaceuticals (Basel); 2020 Nov 16; 13(11):. PubMed ID: 33207768. Abstract: The equilibrium solubility of amygdalin in [ethanol (1) + water (2)] mixtures at 293.15 K to 328.15 K was reported. The thermodynamic properties (standard enthalpy ΔsolnH°, standard entropy ΔsolnS°, and standard Gibbs energy of solution ΔsolnG°) were computed using the generated solubility data via van't Hoff and Gibbs equations. The dissolution process of amygdalin is endothermic and the driving mechanism in all mixtures is entropy. Maximal solubility was achieved in 0.4 mole fraction of ethanol at 328.15 K and the minimal one in neat ethanol at 293.15 K. Van't Hoff, Jouyban-Acree-van't Hoff, and Buchowski-Ksiazczak models were used to simulate the obtained solubility data. The calculated solubilities deviate reasonably from experimental data. Preferential solvation parameters of amygdalin in mixture solvents were analyzed using the inverse Kirkwood-Buff integrals (IKBI) method. Amygdalin is preferentially solvated by water in ethanol-rich mixtures, whereas in water-rich mixtures, there is no clear evidence that determines which of water or ethanol solvents would be most likely to solvate the molecule.[Abstract] [Full Text] [Related] [New Search]