These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-133b inhibits MPP+-induced apoptosis in Parkinson's disease model by inhibiting the ERK1/2 signaling pathway. Author: Dong LG, Lu FF, Zu J, Zhang W, Xu CY, Jin GL, Yang XX, Xiao QH, Cui CC, Xu R, Zhou S, Zhu JN, Shen T, Cui GY. Journal: Eur Rev Med Pharmacol Sci; 2020 Nov; 24(21):11192-11198. PubMed ID: 33215437. Abstract: OBJECTIVE: The aim of this study was to explore the effect of micro ribonucleic acid (miR)-133b on 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis in the Parkinson's disease (PD) model. MATERIALS AND METHODS: PC12 cells were induced by different concentrations of MPP+ to establish the PD cell model. Subsequently, the survival rate of PC12 cells was detected using Cell Counting Kit-8 (CCK-8) assay. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) was used to detect the expression of miR-133b in the PD model induced by different concentrations of MPP+. Next, PC12 cells were transfected with miR-133b mimic and miR-negative control (NC), and divided into MPP+ group, MPP+ + miR-NC group and MPP+ + miR-133b mimic group. Transfection efficiency was verified using qRT-PCR. The apoptosis of cells was detected using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Moreover, the expressions of extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylated (p)-ERK1/2 were determined using Western blotting. RESULTS: After MPP+ treatment, the survival rate of PC12 cells significantly declined (p<0.05). MPP+ exhibited toxicity against PC12 cells in a concentration-dependent manner. Meanwhile, cell survival rate decreased remarkably with the increase of MPP+ concentration (p<0.05). With increased concentration of MPP+, the expression of miR-133b in the PD cell model declined significantly (p<0.05). The apoptosis of PC12 cells was remarkably inhibited by overexpression of miR-133b in the PD cell model (p<0.05). In addition, the protein expression of p-ERK1/2 in PC12 cells was notably reduced after overexpression of miR-133b in the PD cell model (p<0.05). CONCLUSIONS: MiR-133b is lowly expressed in the PD cell model. Furthermore, overexpression of miR-133b inhibits cell apoptosis in the PD cell model by regulating the ERK1/2 signaling pathway.[Abstract] [Full Text] [Related] [New Search]