These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration. Author: Berner K, Cockcroft J, Morris LD, Louw Q. Journal: J Bodyw Mov Ther; 2020 Oct; 24(4):251-260. PubMed ID: 33218520. Abstract: INTRODUCTION: Wearable inertial measurement units (IMUs) enable gait analysis in the clinic, but require calibrations that may affect subsequent gait measurements. This study assessed concurrent validity and within-session reliability of gait kinematics measured by a frequently calibrated IMU-based system. Calibration pose accuracy and intra-rater repeatability, and IMU orientation tracking accuracy, were additionally quantified. METHODS: Calibration poses and gait were recorded in 15 women using IMUs and optical motion capture (OMC) (reference standard) simultaneously. Participants performed six consecutive trials: each comprising a calibration pose and a walk. IMU tracking was assessed separately (once-off) using technical static and dynamic tests. Differences of > 5° constituted clinical significance. RESULTS: Concurrent validity for gait revealed clinically significant between-system differences for sagittal angles (root-mean-square error [RMSE] 6.7°-15.0°; bias -9.3°-3.0°) and hip rotation (RMSE 7.9°; bias -4.2°). After removing modelling offsets, differences for all angles (except hip rotation) were < 5°. Gait curves correlated highly between systems (r > 0.8), except hip rotation, pelvic tilt and -obliquity. Within-session reliability of IMU-measured gait angles was clinically acceptable (standard error of measurement [SEM] < 5°). Calibration poses were repeatable (SEM 0.3°-2.2°). Pose accuracy revealed mean absolute differences (MAD) < 5° for all angles except sagittal ankle, hip and pelvis. IMU tracking accuracy demonstrated RMSE ≤ 2.0°. CONCLUSION: A frequently calibrated IMU system provides reliable gait measurements; comparing highly to OMC after removing modelling differences. Calibration poses can be implemented accurately for most angles and consistently. IMU-measured gait data are clinically useful and comparable within participants, but should not be compared to OMC-measured data.[Abstract] [Full Text] [Related] [New Search]