These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transcriptome profiling reveals the occurrence mechanism of bisexual flowers in melon (Cucumis melo L.).
    Author: Ge C, Zhao W, Nie L, Niu S, Fang S, Duan Y, Zhao J, Guo K, Zhang Q.
    Journal: Plant Sci; 2020 Dec; 301():110694. PubMed ID: 33218617.
    Abstract:
    Most cultivated melons are andromonoecies in which male flowers arose both in main stem and lateral branches but bisexual flowers only emerged from the leaf axils of lateral branches. However, bisexual flowers emerged in leaf axils of main stem after ethephon treatment. Therefore, the mechanism regulating the occurrence of bisexual flowers were investigated by performing transcriptome analysis in two comparison sets: shoot apex of main stem (MA) versus that of lateral branches (LA), and shoot apex of main stem after ethephon treatment (Eth) versus control (Cont). KEGG results showed that genes involved in "plant hormone signal transduction", "MAPK signaling pathway" and "carbon metabolism" were significantly upregulated both in LA and Eth. Further, details of DEGs involved in ethylene signaling pathway were surveyed and six genes were co-upregulated in two comparison sets. Among these, CmERF1, downstream in ethylene signaling pathway, showed the most significantly difference and expressed higher in bisexual buds than that in male buds. Furthermore, fifteen DEGs were found to contain GCC box or CRT/DRE cis-element for CmERF1 in their putative promoter region, and these DEGs involved in several plant hormones signaling pathway, camalexin synthesis, carbon metabolism and plant pathogen interaction.
    [Abstract] [Full Text] [Related] [New Search]