These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exploring QSPR models for predicting PUF-air partition coefficients of organic compounds with linear and nonlinear approaches.
    Author: Zhu T, Gu L, Chen M, Sun F.
    Journal: Chemosphere; 2021 Mar; 266():128962. PubMed ID: 33218721.
    Abstract:
    Partition coefficients are important parameters for measuring the concentration of chemicals by passive sampling devices. Considering the wide application of the polyurethane foam (PUF) in passive air sampling, an attempt for developing several quantitative structure-property relationship (QSPR) models was made in this work, to predict PUF-air partition coefficients (KPUF-air) using linear (multiple linear regression, MLR) and non-linear (artificial neural network, ANN and support vector machine, SVM) methods by machine learning. All of the developed models were performed on a dataset of 170 compounds comprising 9 distinct classes. A series of statistical parameters and validation results showed that models had good prediction ability, robustness and goodness-of-fit. Furthermore, the underlying mechanisms of molecular descriptors emphasized that ionization potential, molecular bond, hydrophilicity, size of molecule and valence electron number had dominating influence on the adsorption process of chemicals. Overall, the obtained models were all established on the extensive applicability domains, and thus can be used as effective tools to predict the KPUF-air of new organic compounds or those have not been synthesized yet which, in turn, could help researchers better understand the mechanistic basis of adsorption behavior of PUF.
    [Abstract] [Full Text] [Related] [New Search]