These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Whole-Cell Biosensor for Detection of 2,4-Diacetylphloroglucinol (DAPG)-Producing Bacteria from Grassland Soil.
    Author: Hansen ML, He Z, Wibowo M, Jelsbak L.
    Journal: Appl Environ Microbiol; 2021 Jan 15; 87(3):. PubMed ID: 33218996.
    Abstract:
    Fluorescent Pseudomonas spp. producing the antibiotic 2,4-diacetylphloroglucinol (DAPG) are ecologically important in the rhizosphere, as they can control phytopathogens and contribute to disease suppression. DAPG can also trigger a systemic resistance response in plants and stimulate root exudation and branching as well as induce plant-beneficial activities in other rhizobacteria. While studies of DAPG-producing Pseudomonas have predominantly focused on rhizosphere niches, the ecological role of DAPG as well as the distribution and dynamics of DAPG-producing bacteria remains less well understood for other environments, such as bulk soil and grassland, where the level of DAPG producers are predicted to be low. In this study, we constructed a whole-cell biosensor for detection of DAPG and DAPG-producing bacteria from environmental samples. The constructed biosensor contains a phlF response module and either lacZ or lux genes as output modules assembled on a pSEVA plasmid backbone for easy transfer to different host species and to enable easy future genetic modifications. We show that the sensor is highly specific toward DAPG, with a sensitivity in the low nanomolar range (>20 nM). This sensitivity is comparable to the DAPG levels identified in rhizosphere samples by chemical analysis. The biosensor enables guided isolation of DAPG-producing Pseudomonas Using the biosensor, we probed the same grassland soil sampling site to isolate genetically related DAPG-producing Pseudomonas kilonensis strains over a period of 12 months. Next, we used the biosensor to determine the frequency of DAPG-producing pseudomonads within three different grassland soil sites and showed that DAPG producers can constitute part of the Pseudomonas population in the range of 0.35 to 17% at these sites. Finally, we showed that the biosensor enables detection of DAPG produced by non-Pseudomonas species. Our study shows that a whole-cell biosensor for DAPG detection can facilitate isolation of bacteria that produce this important secondary metabolite and provide insight into the population dynamics of DAPG producers in natural grassland soil.IMPORTANCE The interest in bacterial biocontrol agents as biosustainable alternatives to pesticides to increase crop yields has grown. To date, we have a broad knowledge of antimicrobial compounds, such as DAPG, produced by bacteria growing in the rhizosphere surrounding plant roots. However, compared to the rhizosphere niches, the ecological role of DAPG as well as the distribution and dynamics of DAPG-producing bacteria remains less well understood for other environments, such as bulk and grassland soil. Currently, we are restricted to chemical methods with detection limits and time-consuming PCR-based and probe hybridization approaches to detect DAPG and its respective producer. In this study, we developed a whole-cell biosensor, which can circumvent the labor-intensive screening process as well as increase the sensitivity at which DAPG can be detected. This enables quantification of relative amounts of DAPG producers, which, in turn, increases our understanding of the dynamics and ecology of these producers in natural soil environments.
    [Abstract] [Full Text] [Related] [New Search]