These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of the CaR-CSE/H2S pathway confers cardioprotection against ischemia-reperfusion injury. Author: Luo Y, Liu LM, Xie L, Zhao HL, Lu YK, Wu BQ, Wu ZY, Zhang ZL, Hao YL, Ou WH, Liu RS, Xu WM, Chen XH. Journal: Exp Cell Res; 2021 Jan 15; 398(2):112389. PubMed ID: 33221316. Abstract: Ischemia-reperfusion (I/R) injury is a multifactorial process triggered when an organ is subjected to transiently reduced blood supply. The result is a cascade of pathological complications and organ damage due to the production of reactive oxygen species following reperfusion. The present study aims to evaluate the role of activated calcium-sensing receptor (CaR)-cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway in I/R injury. Firstly, an I/R rat model with CSE knockout was constructed. Transthoracic echocardiography, TTC and HE staining were performed to determine the cardiac function of rats following I/R Injury, followed by TUNEL staining observation on apoptosis. Besides, with the attempt to better elucidate how CaR-CSE/H2S affects I/R, in-vitro culture of human coronary artery endothelial cells (HCAECs) was conducted with gadolinium chloride (GdCl3, a CaR agonist), H2O2, siRNA against CSE (siCSE), or W7 (a CaM inhibitor). The interaction between CSE and CaM was subsequently detected. Plasma oxidative stress indexes, H2S and CSE, and apoptosis-related proteins were all analyzed following cell apoptosis. We found that H2S elevation led to the improvement whereas CSE knockdown decreased cardiac function in rats with I/R injury. Moreover, oxidative stress injury in I/R rats with CSE knockout was aggravated, while the increased expression of H2S and CSE in the aortic tissues resulted in alleviated the oxidative stress injury. Moreover, increased H2S and CSE levels were found to inhibit cell apoptotic ability in the aortic tissues after I/R injury, thus attenuating oxidative stress injury, accompanied by inhibited expression of apoptosis-related proteins. In HCAECs following oxidative stress treatment, siCSE and CaM inhibitor were observed to reverse the protection of CaR agonist. Coimmunoprecipitation assay revealed the interaction between CSE and CaM. Taken together, all above-mentioned data provides evidence that activation of the CaR-CSE/H2S pathway may confer a potent protective effect in cardiac I/R injury.[Abstract] [Full Text] [Related] [New Search]