These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Consensus guided incomplete multi-view spectral clustering.
    Author: Wen J, Sun H, Fei L, Li J, Zhang Z, Zhang B.
    Journal: Neural Netw; 2021 Jan; 133():207-219. PubMed ID: 33227665.
    Abstract:
    Incomplete multi-view clustering which aims to solve the difficult clustering challenge on incomplete multi-view data collected from diverse domains with missing views has drawn considerable attention in recent years. In this paper, we propose a novel method, called consensus guided incomplete multi-view spectral clustering (CGIMVSC), to address the incomplete clustering problem. Specifically, CGIMVSC seeks to explore the local information within every single-view and the semantic consistent information shared by all views in a unified framework simultaneously, where the local structure is adaptively obtained from the incomplete data rather than pre-constructed via a k-nearest neighbor approach in the existing methods. Considering the semantic consistency of multiple views, CGIMVSC introduces a co-regularization constraint to minimize the disagreement between the common representation and the individual representations with respect to different views, such that all views will obtain a consensus clustering result. Experimental comparisons with some state-of-the-art methods on seven datasets validate the effectiveness of the proposed method on incomplete multi-view clustering.
    [Abstract] [Full Text] [Related] [New Search]