These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low-frequency oscillations of finger skin blood flow during the initial stage of cold-induced vasodilation at different air temperatures. Author: Sera T, Kohno T, Nakashima Y, Uesugi M, Kudo S. Journal: J Physiol Anthropol; 2020 Nov 23; 39(1):37. PubMed ID: 33228778. Abstract: BACKGROUND: Cold-induced vasodilation (CIVD) is known to be influenced by the ambient temperature. Frequency analysis of blood flow provides information on physiological regulation of the cardiovascular system, such as myogenic, neurogenic, endothelial nitric oxide (NO) dependent, and NO-independent activities. In this study, we hypothesized that the major origin of CIVD occurs prior to the CIVD event and investigated finger skin blood flow during the initial stage of CIVD at different ambient temperatures using frequency analysis. METHODS: Eighteen healthy volunteers immersed their fingers in 5 °C water at air temperatures of 20 °C and 25 °C. Finger skin blood flow was measured using laser Doppler flowmetry and analyzed using Morlet mother wavelet. We defined the time when the rate of blood flow increased dramatically as the onset of CIVD, and defined three phases as the periods from the onset of cooling to minimum blood flow (vasoconstriction), from minimum blood flow to the onset of CIVD (prior to CIVD), and from the onset of CIVD to maximum blood flow (CIVD). RESULTS: The increment ratio of blood flow at CIVD was significantly higher at 20 °C air temperature. In particular, at 20 °C air temperature, arteriovenous anastomoses (AVAs) might be closed at baseline, as finger skin temperature was much lower than at 25 °C air temperature, and endothelial NO-independent activity was significantly higher and neurogenic activity significantly lower during vasoconstriction than at baseline. Additionally, the differences in both activities between vasoconstriction and prior to CIVD were significant. On the other hand, there were no significant differences in endothelial NO-dependent activity between baseline and all phases at both air temperatures. CONCLUSIONS: Our results indicated that the increase of endothelial NO-independent activity and the decrease of neurogenic activity may contribute to the high increment ratio of blood flow at CIVD at 20 °C air temperature.[Abstract] [Full Text] [Related] [New Search]