These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultra-small molybdenum sulfide nanodot-coupled graphitic carbon nitride nanosheets: Trifunctional ammonium tetrathiomolybdate-assisted synthesis and high photocatalytic hydrogen evolution.
    Author: Wu X, Zhong W, Ma H, Hong X, Fan J, Yu H.
    Journal: J Colloid Interface Sci; 2021 Mar 15; 586():719-729. PubMed ID: 33228958.
    Abstract:
    The preparation of nanoscale molybdenum sulfide (MoS2)-modified graphitic carbon nitride (g-C3N4) nanosheets usually contains complex and multiple-step operations, including the separate synthesis of nanoscale MoS2 and g-C3N4 nanosheet, and their subsequent composite process. To effectively overcome the above drawbacks, herein, a facile one-step trifunctional ammonium tetrathiomolybdate ((NH4)2MoS4)-assisted approach has been designed to produce ultra-small MoSx nanodot-coupled g-C3N4 nanosheet photocatalyst, including the first addition of ammonium chloride (NH4Cl) and (NH4)2MoS4 into melamine precursors and their following one-step calcination. During high-temperature calcination, except for the promoting generation of the g-C3N4 nanosheets by produced ammonia (NH3) and hydrogen sulfide (H2S) gases, the above (NH4)2MoS4 decomposition not only can efficiently clip the s-heptazine framework to produce more terminal amino groups and cyano groups, but also can produce ultra-small MoSx nanodots on the resultant g-C3N4 nanosheet surface, resulting in the final production of ultra-small MoSx nanodot-coupled g-C3N4 nanosheets. The resultant MoSx nanodot-coupled g-C3N4 nanosheets evidently exhibit increased photocatalytic hydrogen (H2)-generation rate, about 8-fold increase to the traditional MoS2-modified g-C3N4 photocatalyst. The increased H2-generation rate can be mainly attributed to the synergism of MoSx nanodots and cyano group on the g-C3N4 nanosheet surface. The current facile technology could open the sights for the preparation of other high-efficiency photocatalysts.
    [Abstract] [Full Text] [Related] [New Search]