These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Author: de Lacerda Coriolano D, de Souza JB, Bueno EV, Medeiros SMFRDS, Cavalcanti IDL, Cavalcanti IMF. Journal: Braz J Microbiol; 2021 Mar; 52(1):267-278. PubMed ID: 33231865. Abstract: Due to the severity of infections caused by P. aeruginosa and the limitations in treatment, it is necessary to find new therapeutic alternatives. Thus, the use of silver nanoparticles (AgNPs) is a viable alternative because of their potential actions in the combat of microorganisms, showing efficacy against Gram-positive and Gram-negative bacteria, including multidrug-resistant microorganisms (MDR). In this sense, the aim of this work was to conduct a literature review related to the antibacterial and antibiofilm activity of AgNPs against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. The AgNPs are promising for future applications, which may match the clinical need for effective antibiotic therapy. The size of AgNPs is a crucial element to determine the therapeutic activity of nanoparticles, since smaller particles present a larger surface area of contact with the microorganism, affecting their vital functioning. AgNPs adhere to the cytoplasmic membrane and cell wall of microorganisms, causing disruption, penetrating the cell, interacting with cellular structures and biomolecules, and inducing the generation of reactive oxygen species and free radicals. Studies describe the antimicrobial activity of AgNPs at minimum inhibitory concentration (MIC) between 1 and 200 μg/mL against susceptible and MDR P. aeruginosa strains. These studies have also shown antibiofilm activity through disruption of biofilm structure, and oxidative stress, inhibiting biofilm growth at concentrations between 1 and 600 μg/mL of AgNPs. This study evidences the advance of AgNPs as an antibacterial and antibiofilm agent against Pseudomonas aeruginosa strains, demonstrating to be an extremely promising approach to the development of new antimicrobial systems.[Abstract] [Full Text] [Related] [New Search]