These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The value of multiparametric histogram features based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) for the differential diagnosis of liver lesions.
    Author: Ai Z, Han Q, Huang Z, Wu J, Xiang Z.
    Journal: Ann Transl Med; 2020 Sep; 8(18):1128. PubMed ID: 33240977.
    Abstract:
    BACKGROUND: The present study analyzed whole-lesion histogram parameters from intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to explore the clinical value of IVIM histogram features in the differentiation of liver lesions. METHODS: In this retrospective study, 33 cases of hepatic hemangioma (HH), 22 cases of hepatic cysts (HC), and 34 cases of hepatocellular carcinoma (HCC) were underwent IVIM-DWI (b =0-600 s/mm2), which were confirmed pathologically and clinically. The data were processed by IVIM model to obtain the following quantitative indicators: perfusion fraction (f), slow diffusion coefficient (D), and pseudo-diffusion coefficient (or fast diffusion coefficient, D*). The region of interest in the largest solid part of the lesion was delineated for histogram analysis of the correlation between tissue image and lesion type. The relevant histogram parameters were obtained and statistically analyzed. The characteristic histogram parameters for HH, HC, and HCC were compared to find significantly different parameters. The diagnostic efficacies of these parameters for HH, liver cysts, and HCC were assessed using the receiver operating characteristic (ROC) curves. RESULTS: There were significant differences in the maximum diameter, maximum value, minimum value, mean, median, standard deviation, uniformity, skewness, kurtosis, volume, 10th percentile (P10) of D, and 90th percentile (P90) of D between the three groups (P<0.05). The maximum diameter, minimum value, entropy, and volume of D* differed significantly between the three groups (P<0.05). The maximum diameter, minimum value, mean, median, skewness, kurtosis, volume, P10, and P90 of f differed significantly between the three groups (P<0.05). The largest area under the ROC curve (AUC) for both D* and f was that of volume (AUC =0.883 for both). When 1438.802 was used as the volume cut-off, the sensitivity and specificity of volume in differentiating between HH and HC were 87.88 and 77.27, respectively, and the sensitivity and specificity of volume in differentiating between HC and HCC were 77.27 and 85.29. CONCLUSIONS: A multiparametric histogram from IVIM-DWI magnetic resonance imaging (MRI) is an effective means of identifying HH, HC, and HCC that provides valuable reference information for clinical diagnosis.
    [Abstract] [Full Text] [Related] [New Search]