These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cartilage-like tribological performance of charged double network hydrogels.
    Author: Bonyadi SZ, Demott CJ, Grunlan MA, Dunn AC.
    Journal: J Mech Behav Biomed Mater; 2021 Feb; 114():104202. PubMed ID: 33243694.
    Abstract:
    A synthetic hydrogel material may offer utility as a cartilage replacement if it is able to maintain low friction in different sliding environments and achieve bulk mechanical properties to withstand the severe environment of the joint. In this work, we compared the tribological behavior of four double network (DN) hydrogels to that of fresh porcine cartilage in both water and fetal bovine serum (FBS). The DN hydrogels were comprised of a negatively charged 1st network and a 2nd network wherein comonomers of varying charge (i.e. neutral, positive, negative, and zwitterionic) were introduced at 10 wt% to an otherwise neutral network. A steel ball probe was used to perform microindentation tests to determine the surface elastic modulus of the samples and estimate their contact areas during sliding. Friction tests using a stationary probe with a stage that reciprocated at a range of speeds were performed to develop lubrication curves in both water and FBS. We found that the DN hydrogels with a neutral or zwitterionic 2nd network had the lowest friction and shear stresses, notably below that of cartilage. The differences in charge and structure of the samples were more evident in water than in FBS, as the lubrication responses for all the hydrogels spanned a wider range of values. In FBS, the lubrication responses were pushed towards elasto-hydrodynamics with nearly all friction coefficient values falling below 0.3. This indicates that the FBS interacts with the hydrogels and cartilage samples in a similar manner as that of cartilage by maintaining a robust layer of solution at the interface during sliding. These DN hydrogels prove to fulfill, and in some cases surpass, the lubrication demands for cartilage replacement in load bearing joints.
    [Abstract] [Full Text] [Related] [New Search]