These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Probabilistic framework for integration of mass spectrum and retention time information in small molecule identification. Author: Bach E, Rogers S, Williamson J, Rousu J. Journal: Bioinformatics; 2021 Jul 19; 37(12):1724-1731. PubMed ID: 33244585. Abstract: MOTIVATION: Identification of small molecules in a biological sample remains a major bottleneck in molecular biology, despite a decade of rapid development of computational approaches for predicting molecular structures using mass spectrometry (MS) data. Recently, there has been increasing interest in utilizing other information sources, such as liquid chromatography (LC) retention time (RT), to improve identifications solely based on MS information, such as precursor mass-per-charge and tandem mass spectrometry (MS2). RESULTS: We put forward a probabilistic modelling framework to integrate MS and RT data of multiple features in an LC-MS experiment. We model the MS measurements and all pairwise retention order information as a Markov random field and use efficient approximate inference for scoring and ranking potential molecular structures. Our experiments show improved identification accuracy by combining MS2 data and retention orders using our approach, thereby outperforming state-of-the-art methods. Furthermore, we demonstrate the benefit of our model when only a subset of LC-MS features has MS2 measurements available besides MS1. AVAILABILITY AND IMPLEMENTATION: Software and data are freely available at https://github.com/aalto-ics-kepaco/msms_rt_score_integration. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.[Abstract] [Full Text] [Related] [New Search]