These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced phosphate scavenging with effective recovery by magnetic porous biochar supported La(OH)3: Kinetics, isotherms, mechanisms and applications for water and real wastewater.
    Author: Zhang Y, Akindolie MS, Tian X, Wu B, Hu Q, Jiang Z, Wang L, Tao Y, Cao B, Qu J.
    Journal: Bioresour Technol; 2021 Jan; 319():124232. PubMed ID: 33254456.
    Abstract:
    Herein, La(OH)3 decorated magnetic porous biochar (MPBC) was synthesized via KHCO3 activation and hydrothermal processes. The La-to-MPBC mass ratio of 3:1 described as La3-MPBC possessed a monolayer phosphate adsorption capacity of 116.08 mg/g across a pH range of 3.0-6.0 with fast attainment of adsorption equilibrium in 150 min. Moreover, the phosphate adsorption was substantially stable during the interference of various co-existing ions with over 92% of phosphate removal and 77% of desorption efficiency maintained after four recycles. And La3-MPBC was easily separated by magnet force with negligible La and Fe leakages within the pH range of 3.0-10.0. Furthermore, La3-MPBC was supported to achieve phosphate binding through the synergistic actions of electrostatic attraction, ligand exchange, inner-sphere complexation and weak precipitation. Significantly, La3-MPBC exhibited a high performance for decontaminating low-concentration phosphate to meet regulatory requirements. All these results suggested La3-MPBC to be an ideal candidate for phosphate removal in real applications.
    [Abstract] [Full Text] [Related] [New Search]