These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae are controlled by the SIR genes.
    Author: Kimmerly WJ, Rine J.
    Journal: Mol Cell Biol; 1987 Dec; 7(12):4225-37. PubMed ID: 3325822.
    Abstract:
    In Saccharomyces cerevisiae, two cis-acting regulatory sites called E and I flank the silent mating-type gene, HMRa, and mediate SIR-dependent transcriptional repression of the a1-a2 promoters. It has been shown previously that the E and I sites have plasmid replicator (ARS) activity. We show in this report that the ARS activity of the E and I sites is governed by the SIR genotype of the cell. In wild-type cells, a plasmid carrying the E site from HMRa (HMR E) in the vector YIp5 exhibited very high mitotic stability at a copy number of approximately 25 per cell. However, in sir2, sir3, or sir4 mutants, plasmids with HMR E had the low mitotic stability characteristic of plasmids containing ARS1, a SIR-independent replicator. Elevated mitotic stability of plasmids that carry HMR E is due to a segregation mechanism provided by SIR and HMR E. In sir2 and sir4 mutants, the plasmid copy number was significantly lowered, suggesting that these gene products also participate in the replication of plasmids carrying HMR E. The phenotype of point mutations introduced at an 11-base-pair ARS consensus sequence present at HMR E indicated that this sequence is functional but not absolutely required for autonomous replication of the plasmid and that it is not required for SIR-dependent mitotic stabilization. A plasmid carrying both a centromere and HMR E exhibited reduced mitotic stability in wild-type cells. This destabilization appeared to be due to antagonism between the segregation functions provided by the centromere and by HMR E.
    [Abstract] [Full Text] [Related] [New Search]