These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: One-Step Low-Temperature Molten Salt Synthesis of Two-Dimensional Si@SiOx@C Hybrids for High-Performance Lithium-Ion Batteries. Author: Liu Q, Hu X, Liu Y, Wen Z. Journal: ACS Appl Mater Interfaces; 2020 Dec 16; 12(50):55844-55855. PubMed ID: 33259194. Abstract: Various strategies have been developed to mitigate the huge volume expansion of a silicon-based anode during the process of (de)lithiation and accelerate the transport rate of the ions/electrons for lithium-ion batteries (LIBs). Here, we report a one-step synthetic route through a low-temperature eutectic molten salt (LiCl-KCl, 352 °C) to fabricate two-dimensional (2D) silicon-carbon hybrids (Si@SiOx@MpC), in which the silicon nanoparticles (SiNPs) with an ultrathin SiOx layer are fully encapsulated by graphene-like carbon nanosheets derived from a low-cost mesophase pitch. The combination of an amorphous graphene-like carbon conductive matrix and a SiOx protective layer strongly promotes the electrical conductivity, structure stability, and reaction kinetics of the SiNPs. Consequently, the optimized Si@SiOx@MpC-2 anode delivers large reversible capacity (1239 mAh g-1 at 1.0 A g-1), superior rate performance (762 mAh g-1 at 8 A g-1), and long cycle life over 600 cycles (degradation rate of only 0.063% every cycle). When coupled with a homemade nano-LiFePO4 cathode in a full cell, it exhibits a promising energy density of 193.5 Wh kg-1 and decent cycling stability for 200 cycles at 1C. The methodology driven by salt melt synthesis paves a low-cost way toward simple fabrication and manipulation of silicon-carbon materials in liquid media.[Abstract] [Full Text] [Related] [New Search]