These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of sclerostin in the regenerating scales of goldfish and its increase under microgravity during space flight.
    Author: Yamamoto T, Ikegame M, Hirayama J, Kitamura KI, Tabuchi Y, Furusawa Y, Sekiguchi T, Endo M, Mishima H, Seki A, Yano S, Matsubara H, Hattori A, Suzuki N.
    Journal: Biomed Res; 2020; 41(6):279-288. PubMed ID: 33268672.
    Abstract:
    Osteocytes, osteoblasts (bone-forming cells), and osteoclasts (bone-resorbing cells) are the primary types of cells that regulate bone metabolism in mammals. Sclerostin produced in bone cells activates osteoclasts, inhibiting bone formation; excess production of sclerostin, therefore, leads to the loss of bone mass. Fish scales have been reported to have morphological and functional similarities to mammalian bones, making them a useful experimental system for analyzing vertebrate bone metabolism in vitro. However, whether fish scales contain cells producing sclerostin and/or osteocytes has not been determined. The current study demonstrated, for the first time, that sclerostin-containing cells exist in goldfish scales. Analysis of the distribution and shape of sclerostin-expressing cells provided evidence that osteoblasts produce sclerostin in goldfish scales. Furthermore, our results found that osteocyte-like cells exist in goldfish scales, which also produce sclerostin. Finally, we demonstrated that microgravity in outer space increased the level of sclerostin in the scales of goldfish, a finding suggesting that the induction of sclerostin is the mechanism underlying the activation of osteoclasts under microgravity.
    [Abstract] [Full Text] [Related] [New Search]