These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of miR-122 reduced atherosclerotic lesion formation by regulating NPAS3-mediated endothelial to mesenchymal transition.
    Author: Wu X, Du X, Yang Y, Liu X, Liu X, Zhang N, Li Y, Jiang X, Jiang Y, Yang Z.
    Journal: Life Sci; 2021 Jan 15; 265():118816. PubMed ID: 33278397.
    Abstract:
    AIMS: Endothelial to mesenchymal transition (EndMT) is closely related to atherosclerosis. Herein, we aim to determine whether miR-122 is involved in EndMT and the underlying mechanism in atherosclerosis. MAIN METHODS: qRT-PCR was performed to detect miR-122 expression in ApoE-/- mice and cellular EndMT model induced by H2O2. MiR-122 expression in vivo was modulated by lenti-virus injection and by genetic manipulation. Hematoxylin and eosin (HE) and Oil-red O staining were used to observe the plaque size and lipid accumulation in the aortic roots. F4/80 staining, elastin staining, and masson staining were used to observe the components of atherosclerotic lesions. MiR-122 expression in endothelial cells was modulated by transfection of miR-122 mimic and inhibitor. Western blotting and co-localization of endothelial markers (VE-cadherin, CD31) and mesenchymal markers (Vimentin, α-SMA) were carried out to determine EndMT. KEY FINDINGS: MiR-122 was upregulated in the aortic intima and serum of ApoE-/- mice induced by HFD and in cellular EndMT model. Inhibition of miR-122 repressed the atherosclerotic plaque progression and vulnerable plaque formation in ApoE-/- mice. In vitro, endothelial cells acquired a spindle-shaped morphology accompanying decrease of the endothelial markers (VE-cadherin, CD31) and increase of the mesenchymal markers (Vimentin, α-SMA) in the presence of H2O2, which was inhibited by miR-122 inhibitor. Furthermore, NPAS3 functions as a target of miR-122, and NPAS3 silencing abolished the anti-EndMT effect of miR-122 inhibitor. SIGNIFICANCE: Inhibition of miR-122 prevents atherosclerosis and regulates NPAS3-mediated EndMT, suggesting that miR-122 may be a novel target in the treatment of EndMT-associated diseases including atherosclerosis.
    [Abstract] [Full Text] [Related] [New Search]