These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rational design and preparation of copper vanadate anchored on sulfur doped reduced graphene oxide nanocomposite for electrochemical sensing of antiandrogen drug nilutamide using flexible electrodes. Author: Sharma TSK, Hwa KY. Journal: J Hazard Mater; 2021 May 15; 410():124659. PubMed ID: 33279323. Abstract: Copper vanadate nanoparticles (Cu2V2O7) are synthesized by using a simple hydrothermal method and later anchored with sulfur-doped reduced graphene oxide (S-rGO) by using ultrasonication to form a hybrid nanocomposite. The synthesized composite underwent characterizations like X-ray diffraction analysis (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Dynamic ray scattering-Ultra violet-visible spectroscopy (DRS-UV-visible) and X-ray photoelectron spectroscopically revealed the triclinic pattern of the P 1̅ space group of α-Cu2V2O7 and the reduced oxygen deficiency state of metal centers (Cu+ or V4+) resulting with oxides of mixed-valence oxidative states and forming of Cu-O bond. Morphological analysis was carried out by using transmission electron microscopy (TEM) and Field emission scanning electron microscopy (FE-SEM) with elemental mapping and EDX analysis. Furthermore, a novel electrochemical sensor is prepared by using the hybrid sCu2V2O7/S-rGO nanocomposite on to a disposable screen-printed carbon paste electrode (SPCE) for electrochemical sensing of antiandrogen drug nilutamide (NLT). This report reveals excellent activity in determining NLT with a low detection limit of 0.00459 nM for the linear range of 0.001-15 μM with high sensitivity of 26.2605 µA µM-1 cm-2. Further, electrode performance showed appreciable performance in real-time monitoring of biological samples like human blood serum, urine samples.[Abstract] [Full Text] [Related] [New Search]