These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy.
    Author: Ge J, Niu T, Xu D, Yin G, Wang Y.
    Journal: Entropy (Basel); 2020 Mar 02; 22(3):. PubMed ID: 33286065.
    Abstract:
    Feature extraction is one of the challenging problems in fault diagnosis, and it has a direct bearing on the accuracy of fault diagnosis. Therefore, in this paper, a new method based on ensemble empirical mode decomposition (EEMD), wavelet semi-soft threshold (WSST) signal reconstruction, and multi-scale entropy (MSE) is proposed. First, the EEMD method is applied to decompose the vibration signal into intrinsic mode functions (IMFs), and then, the high-frequency IMFs, which contain more noise information, are screened by the Pearson correlation coefficient. Then, the WSST method is applied for denoising the high-frequency part of the signal to reconstruct the signal. Secondly, the MSE method is applied for calculating the MSE values of the reconstructed signal, to construct an eigenvector with the complexity measure. Finally, the eigenvector is input to a support vector machine (SVM) to find the fault diagnosis results. The experimental results prove that the proposed method, with a better classification performance, can better solve the problem of the effective signal and noise mixed in high-frequency signals. Based on the proposed method, the fault types can be accurately identified with an average classification accuracy of 100%.
    [Abstract] [Full Text] [Related] [New Search]