These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Scaffold-Constrained Molecular Generation. Author: Langevin M, Minoux H, Levesque M, Bianciotto M. Journal: J Chem Inf Model; 2020 Dec 28; 60(12):5637-5646. PubMed ID: 33301333. Abstract: One of the major applications of generative models for drug discovery targets the lead-optimization phase. During the optimization of a lead series, it is common to have scaffold constraints imposed on the structure of the molecules designed. Without enforcing such constraints, the probability of generating molecules with the required scaffold is extremely low and hinders the practicality of generative models for de novo drug design. To tackle this issue, we introduce a new algorithm, named SAMOA (Scaffold Constrained Molecular Generation), to perform scaffold-constrained in silico molecular design. We build on the well-known SMILES-based Recurrent Neural Network (RNN) generative model, with a modified sampling procedure to achieve scaffold-constrained generation. We directly benefit from the associated reinforcement learning methods, allowing to design molecules optimized for different properties while exploring only the relevant chemical space. We showcase the method's ability to perform scaffold-constrained generation on various tasks: designing novel molecules around scaffolds extracted from SureChEMBL chemical series, generating novel active molecules on the Dopamine Receptor D2 (DRD2) target, and finally, designing predicted actives on the MMP-12 series, an industrial lead-optimization project.[Abstract] [Full Text] [Related] [New Search]